HEVC 2016 – 2nd & 3rd November 2016 – IET London, Savoy Place

Claytex will be exhibiting and presenting at the 6th Hybrid and Electric Vehicle Conference organised by the IET in London.

With hybrid and electric passenger vehicles now forming just one part of the mainstream efforts by OEMs to reduce CO2 emissions, a ‘green’ halo is not enough by itself and electrified vehicles need to be cost competitive with conventional powertrains.

HEVC 2016 returns in its 6th year with the latest work and research in the field and of Hybrid and Electric Vehicles and will once again address the developments and innovation in the industry focusing on technology, strategy and operational developments.

The conference is expected to be as packed as always with brand new findings and results plus some never before released works from both industry and academia.


Meet with Claytex

On our stand, we’ll be showcasing our range of Systems Engineering Solutions including Dymola and Reqtify; and rFpro.

Presentation – Session 5: Thermal Management – 2nd November – 15:45

‘Thermal management strategies for integrated hybrid vehicle subsystems’

S. Robinson – Jaguar Land Rover, A. Picarelli – Claytex,  V. Avila

Intelligent thermal management is a key area of interest for delivering ever more efficient vehicles. The ability to redistribute and reroute thermal energy around the vehicle, it’s subsystems and environment enables for example, quicker component conditioning to optimal operating conditions. This in turn can yield reduction in on-board energy source utilisation for things other than vehicle propulsion.

On BEVs (Battery Electric Vehicles) a particular area of interest is the thermal management of the battery and cabin, without requiring significant use of power from the battery itself. The interest in this area is to minimise the impact of subsystem conditioning on vehicle range.

Heat pumps are becoming more popular for moving thermal energy throughout the vehicle systems. Systems vary from simple ones which take heat out of the outside air, transferring it to vehicle subsystems which require heating up. In a reverse situation the same heat pump system could be used for chilling the cabin air or other vehicle components.

The coupling of vehicle subsystems to the heat pump heat exchangers requires careful design and evaluation of fluids routing throughout the vehicle. Conventional vehicle architectures may require substantial re-engineering to accommodate the heat pump fluid circuitry layout, particularly for heat pump systems which interact with multiple vehicle subsystems.

This paper applies systems engineering to the evaluation and selection of a multiple-subsystem integrated heat pump for BEV applications. Benefits of scenarios and configurations are evaluated and discussed to narrow down the feasible solutions prior to hardware development and demonstrator assembly.

The scenarios cover both warm-up and pull-down situations with a particular focus on warm-up (predicted to be the worst case for BEV range reduction). The work identifies ways to minimise the use of PTC (Positive Thermal Coefficient) devices where electrical energy is used to heat up a fluid (cabin ventilation air, for example), such energy typically being drawn from the traction battery.

Benefits of the investigated heat pump configurations are given in terms of reduced heating power drawn from the traction battery but also improvement on vehicle range as a result of optimised thermal energy transfer across the vehicle systems.


Please view the full conference programme here: HEVC 2016 Conferenece Programme  

In order to attend the event, you can register via: HEVC 2016 Conference Registration

If you have any questions or for more information, please do not hesitate to contact us.

Telephone: +44 1926 885900
Email: sales@claytex.comlearn@claytex.com


Got a question? Just fill in this form and send it to us and we'll get back to you shortly.


© Copyright 2010-2024 Claytex Services Ltd All Rights Reserved

Log in with your credentials

Forgot your details?